
STEAM PLANT WITH COMPONENT EFFICIENCIES

A steam plant generates steam at 500 psia and 550°F. The condenser is maintained at a vacuum pressure of 4.7 psi. Condensate is measured at 188°F at the condenser exit. The feed pump circulates feed water at a rate of 200,000 lb_m/hr. The Higher Heating Value of the fuel is 18,500 Btu/lb_m. The feed pump is 90% efficient. The turbine is 94% efficient. The boiler is 96% efficient.

Find: a) amount of condensate depression [°F]

- b) pump work [Btu/lb_m]
- c) turbine work [Btu/lb_m]

- d) cycle thermal efficiency [%]
- e) steam plant net power [hp]
- f) fuel mass flow rate [lb_m/hr]

- NOTE: (1) PT 3 IS SUPERHEATED

 BECAUSE 550°F EXCEEDS

 TSAT = 467.01°F @ 500 PSIA
 - (2) PT 1 IS SUBCOOLED

 BECAUSE 188°F IS LESS

 THAN TSAT = 193,21°F

 @ 10 PSIA

a) AMOUNT OF CONDENSATE DEPRESSION (ie AMOUNT OF SUBCOOLING OF THE CONDENSATE)

CALCULATE ALL ENTHALPIES NEXT:

- (1) hi = hf @ (Ti = 188°F), NOTE: hi + hf @ 10PSIA hi = 156.03 Btu/LBM, vi = Vf @ 188°F = ,016559 FT3/LBM
- (3) $h_{25} = h_1 + W_p = h_1 + V_1(p_2 p_1) \frac{144}{776} = 156.03 + (.016559)(500 10)(\frac{44}{178})$ $h_{25} = 157.53 \text{ Btu/LBm}$
- ② $\eta_p = \frac{h_{25} h_1}{h_2 h_1} = .90 = \frac{157.53 156.03}{h_2 156.03} \Rightarrow h_2 = 157.70 \text{ Btu/UBM}$
- (3) $h_3 = h$ @ 500 BIA, 550°F (THBLE 3) $h_3 = 1267.0$ Btu/LBM°R , S3 (TABLE 3) = 1.5284 Btu/LBM°R
- (45) STEP 1: S3 = S4 = SF + X45(SF3) NOTE: SF AND SF3 FROM TABLE 2 @ 10 PSIA 1.5284 = .2836 + (X45)(1.5043)

X4s = .8275

STEP 2: h4s! = hf + X4s (hfg)

= 161.26 + (.8275)(982.1)

h4s = 973.9 Btu/LBm

b) PUMP WORK, WP: $W_p = h_2 - h_1 = 157.70 - 156.03$ NOTE: USE $h_2 NOT h_{25}$ Wp = 1.67 Btu/18m

C) TURBINE WORK, WT:

$$W_T = h_3 - h_4 = 1267.0 - 991.5$$
 $W_T = 275.5 Btu/LBm$

d) CYCLE THERMAL EFFICIENCY, 19TH:

$$\eta_{TH} = \frac{\omega_{NET}}{9s} = \frac{\omega_{T} - \omega_{s}}{9s}$$

$$\eta_{TH} = \frac{\omega_{NET}}{Q_{C}} = \frac{\omega_{T} - \omega_{P}}{Q_{C}}$$

 $17\pi H = \frac{\omega_{NET}}{95} = \frac{\omega_{T} - \omega_{P}}{95}$, $95 = h_3 - h_2 = 1267.0 - 157.70$

$$1/m = \frac{3000}{95} = \frac{3755 - 167}{95}$$

 $\eta_{TH} = \frac{275.5 - 1.67}{1109.3}$

$$= \frac{273.83}{1109.3}$$

$$971 = 24.7\%$$

WNET = MSTM (WNET) - NOTE: IF TURBINE POWER WAS ASKED INSTEAD, USE WT = 200,000 Bm/HR (273,83 Btu/Bm)

$$= 54.766 \times 10^{6} \frac{8tu}{HR} \left(\frac{1 HP}{2545} \frac{1}{8tu/HR} \right)$$

$$\dot{W}_{NET} = 21,519 HP$$

$$\eta_{BOIL} = \frac{\dot{m}_{STM} (q_s)}{\dot{m}_{FUEL} (HHV)}$$

NOTE: USE h4 NOT h4s

95 = 1109.3 Btu/LBM